
Classification of Chest X-Rays Using Shallow and Deep Learning Methods

Kopal Garg
Department of Computer Science

University of Toronto
kopal.garg@mail.utoronto.ca

Rohan Deepak Ajwani
Department of Electrical & Computer

Engineering
University of Toronto

rohan.ajwani@mail.utoronto.ca

Charita Koya
Department of Computer Science

University of Toronto
charita.koya@mail.utoronto.ca

Yash Prakash
Department of Computer Science

University of Toronto
yash.prakash@mail.utoronto.ca

I. INTRODUCTION
As a result of a deadly coronavirus that took the form of a pandemic, hundreds of thousands of deaths have been
recorded due to improper and untimely diagnosis of COVID-19 in patients. During this time, all of the world's focus
shifted towards providing the best healthcare for anyone that is affected. Our study is based on one such major
goal—to distinguish and classify between chest X-Ray images of normal, pneumonia-ridden, and COVID-19
affected lungs. In this work, we show how effective shallow and deep learning methods can be in assisting in the
diagnosis of chest X-Rays of diseased lungs into the aforementioned three categories. We worked with a balanced
dataset consisting of 6939 .jpeg image samples of chest X-Ray posteroanterior images. In our first task, we trained
shallow classification models such as Support Vector Machine (SVM), XGBoost and Decision Tree (DT) and
compared them against various CNN configurations, while experimenting with various hyperparameters, loss
functions and gradient descent optimization algorithms. In our second task, we demonstrated the use of shallow
classifiers in classifying features extracted by a CNN. We removed the fully-connected layer of the CNN, while
maintaining the remaining network that consisted of a series of convolution and pooling layers, and added classifiers
like SVM and XGBoost on top. For both tasks, we employed standard image processing techniques such as
histogram equalization, grayscale transformation and fixed thresholding and also experimented with dimensionality
reduction techniques like Principal Component Analysis (PCA).

Keywords: Chest X-Ray Classification, X-Ray Image Pre-processing, Convolutional Neural Networks, Transfer
Learning

II. RELATED WORK
Several studies have reported the use of machine and deep learning approaches for investigation of COVID-19 chest
X-Rays. Using a dataset of 225 confirmed COVID-19 X-Ray scans, Sekeroglu et al. [1] performed 38 experiments
using 4 ConvNet architectures differing in input dimension, and dense layer number and dimension, 10 experiments
using five ML models such as Support Vector Machine (SVM), Logistic Regression (LR), Naïve Bayes (NB),
Decision Trees (DT) and k-Nearest Neighbor, and 14 transfer learning experiments using pre-trained networks. They
achieved a mean sensitivity of 93.84%, mean specificity of 99.18%, and mean accuracy of 98.50%. Using a dataset
of 1341 normal, 1345 viral pneumonia and 219 COVID-19 patients’ chest X-Ray images, Satu et al. [2] proposed
the use of an enhanced convolutional neural network (CNN) that achieved a 94.03% accuracy, 95.52% AUC and
94.03% F1-measure in detecting COVID-19 from chest X-Ray images. However, high accuracy on a heavily
imbalanced and small dataset cannot guarantee the effectiveness of COVID-19 detection. Ozturk et al. [3] proposed
a variant of a similar CNN architecture that achieved 98.08% test accuracy in binary classification and 87.02% test
accuracy in three-category classification (COVID-19, pneumonia and normal cases).

Minaee et al. [4] trained four popular CNN models, ResNet18, ResNet50, SqueezeNet, and DenseNet-121,
on a dataset containing 5000 chest X-ray images with binary labels. Both ResNet18 [5] and ResNet50 [6] were
pre-trained on the ImageNet dataset and differed in their number of layers. SqueezeNet [7] employs model
compression techniques that alternate between having 1x1 layers to squeeze incoming data, and two parallel 1x1 and
3x3 layers to expand the data. In DenseNet [8], each layer receives feature maps from preceding layers with fewer
channels. DenseNet is also known to have higher computational and memory efficiency. In this study’s dataset, since
the number of scans in the COVID-19 class were limited, the last layer of their CNN was fine-tuned, and the
pre-trained models were used as a feature extractor. Their best model achieved a sensitivity of 98% while having a
specificity of 92%.

Sethy et al. [9] also performed transfer learning using pre-trained networks including AlexNet, VGG16,
VGG19, GoogleNet, ResNet101, InceptionV3, MobileNetV2 and ShuffleNet. They extracted features from the fully
connected layers of pre-trained networks and fed them to an SVM classifier for multi-class classification. Of
interest, they achieved an accuracy of 98.66% using ResNet50 and SVM. Stubblefield et al. [10] used a deep CNN,
CheXNet, for extracting image features and XGBoost for performing classification. By using the output vector from
CheXNet as input for the XGBoost model, they transferred high-level latent representations of the chest X-Ray
image’s features. This decreased the amount of time needed to train the XGBoost model. Rajagopal et al. [11]
performed a similar comparative study on four different models: transfer learning model (VGGNet), CNN, SVM
using features extracted from a CNN, and XGBoost with features extracted from a CNN, achieving an accuracy of
95.27%, 95.52%, 94.94% and 95.71%, respectively. Although deep learning techniques enable image classification
without manual feature engineering, Khuazni et al. [12] showed that by employing dimensionality reduction
techniques, such as kernel-PCA, one can generate a set of optimal features and considerably decrease their model’s
training time due to lower redundancy. They also showed that their model had ~10,000 parameters, which is
considerably smaller than typical classification models like AlexNet with 60M parameters, and ResNet50 with 25M
parameters.

III. PROPOSED APPROACH
A. Data Pre-Processing

The data was collected from the following sources: firstly, a total 1401 samples of COVID-19 were
collected using GitHub repository [13], [14] and Figshare data repository websites [15], [16]. 912 augmented images
were also collected from Mendeley [17]. Then, 2313 samples of normal and pneumonia XRays were obtained from
Kaggle [18], [19].

Since we acquired images from various sources, we applied a few preprocessing steps before training to
prepare images for classification. The dataset consists of images with variable-resolutions, color channels, and sizes.
To standardize these characteristics across the dataset, we converted the images to single channel grayscale, and
resized them to 128 x 128.

To handle images with varying illumination, we used a function from OpenCV that applies fixed-level
thresholding to a single-channel array. It outputs a binary image out of a grayscale image and removes noise by
filtering out pixels with extreme values. A fixed threshold is computed using the maximum and minimum pixel
value in an image. If a given pixel value is smaller than the threshold, it is set to 0, otherwise, it is set to the
maximum value of 255. This is also useful in segmenting the region of interest, i.e., the lungs, from the background.

We noticed that images from certain datasets had brighter regions, i.e., pixel values were confined to a high
range of values, while others were darker. We used histogram equalization from OpenCV to improve the contrast of
input grayscale images, and to stretch out the intensity range. This is a transformation function that maps pixels in
brighter regions to pixels in full regions, and outputs an image with consistent lighting conditions. Figure 1 shows a
comparison between an original image and an image obtained using our pre-processing pipeline.

FIGURE 1: A. Original image. B. Image after grayscale transformation, resizing, fixed thresholding, and histogram equalization.

Finally, we experimented with PCA as a feature space reduction technique. Although our dataset is
balanced, and we use more images than most existing studies, operating in a 16,384-dimensional space can be
problematic with a small sample size. Therefore, we used PCA to reduce the dimensionality of the feature space by
calculating the eigenvectors of the covariance matrix of the set of 16,384-dimensional feature vectors, and then
projecting each feature vector onto the largest eigenvectors. The scikit-learn.decomposition.PCA documentation
states that the number of PCs must be between 0 and min(# training features, # training samples). Our training set
had 1,892 samples and 16,384 features. Therefore, the maximum number of PCs we could use was 1,892. We
empirically determined an optimal number of PCs, by finding the number that led to high classification accuracy,
and minimum total reconstruction loss over all training points, which was computed using the Euclidean distance:𝑚

. By visualizing the plots in Figure 2., we determined that would be an optimal number of𝑅 =
𝑖=1

𝑚

∑ 𝑥
𝑖

− 𝑥
𝑖

|||
|||

|||
|||

2
322

PCs. By employing PCA, we converted the original pool of 16,384 (i.e., 128 x 128 image) features to 1,024 (i.e., 32
x 32 image) synthetic features resulting in a ~10x smaller feature space, while still capturing >99% of the overall
variance. Figure 3 shows a comparison between a preprocessed image and the inverse transformed image after PCA.

FIGURE 2: A. Baseline model accuracy. B. Projection loss.

FIGURE 3: A. Pre-processed image before PCA. B. Reconstructed image after inverse PCA.

B. Baseline Models
1) Support Vector Machines

SVMs are inherently two-class classifiers but can be extended to handle multiclass classification through
the one-vs-rest (OVR) method, which involves training a series of binary SVMs, being the number of classes.𝑘 𝑘
The classifier is trained with all of the examples in the class with positive labels, and the rest of the𝑚𝑡ℎ 𝑚𝑡ℎ
examples with negative labels. For a given training set with data points, , where𝑙 (𝑥

1
, 𝑦

1
),..., (𝑥

𝑙
, 𝑦

𝑙
)

and , the classifier solves the following optimization problem:𝑥
𝑖

∈ 𝑅𝑛, 𝑖 = 1,.., 𝑙 𝑦
𝑖

∈ {1,..., 𝑘} 𝑚𝑡ℎ

with the following constraints: and𝑚𝑖𝑛
𝑤𝑚,𝑏𝑚,ξ𝑚

1
2 (𝑤𝑚)𝑇𝑤𝑚 + 𝐶

𝑖=1

𝑙

∑ ξ
𝑖
𝑚 (𝑤𝑚)𝑇ϕ(𝑥

𝑖
) + 𝑏𝑚 ≥ 1 − ξ

𝑖
𝑚, 𝑖𝑓 𝑦

𝑖
= 𝑚

, and , where map to a higher dimension, is the(𝑤𝑚)𝑇ϕ(𝑥
𝑖
) + 𝑏𝑚 ≤ 1 − ξ

𝑖
𝑚, 𝑖𝑓 𝑦

𝑖
≠ 𝑚 ξ

𝑖
𝑚≥ 0, 𝑖 = 1,.., 𝑙 ϕ 𝑥

𝑖
 𝐶

penalty parameter and are slack variables that make it possible to satisfy the constraints even when the originalξ
constraint is not met [20]. Smaller values emphasize the importance of and larger diminish the importance of .𝐶 ξ 𝐶 ξ
By minimizing this, we maximize the margin between two classes. This leads to decision functions and the test𝑘
datum is accepted by the class with the highest value of decision function and rejected by the rest, such that the

[20]. We performed cross-validation grid-search using the𝑐𝑙𝑎𝑠𝑠
𝑥

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑚=1,...,𝑘

((𝑤𝑚)𝑇ϕ(𝑥) + 𝑏𝑚)
module from scikit-learn, considering three hyperparameters: [0.01, 0.1, 1, 10, 100], ['rbf',𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 𝐶 𝑘𝑒𝑟𝑛𝑒𝑙

'poly', 'linear', 'sigmoid']and [1, 0.1, 0.01, 0.001, 0.0001]for non-linear kernels. It was found that {'C':𝑔𝑎𝑚𝑚𝑎
0.01, 'gamma': 1, 'kernel': rbf} were the optimal hyperparameter values.

2) Decision Tree
Decision Trees (DTs) aim to predict target values by learning rules inferred from the features, and can

inherently handle multiclass classification problems. Without assuming features are uncorrelated, the method builds
a single model that can simultaneously predict all outputs. The method works well with balanced datasets like ours,
as it prevents the tree from being biased towards a single dominant class. Again for a given training set with data𝑙
points, , where and , a DT would recursively partition the feature(𝑥

1
, 𝑦

1
),..., (𝑥

𝑙
, 𝑦

𝑙
) 𝑥

𝑖
∈ 𝑅𝑛, 𝑖 = 1,.., 𝑙 𝑦

𝑖
∈ {1,..., 𝑘}

space resulting in samples with similar target values being grouped. For data at node (, the data would be𝑚, 𝑄
𝑚

)

partitioned into and subsets, where and𝑄
𝑚
𝑙𝑒𝑓𝑡(θ) 𝑄

𝑚
𝑟𝑖𝑔ℎ𝑡(θ) 𝑄

𝑚
𝑙𝑒𝑓𝑡(θ) = {(𝑥, 𝑦)|𝑥

𝑗
≤ 𝑡

𝑚
} 𝑄

𝑚
𝑟𝑖𝑔ℎ𝑡(θ) = 𝑄

𝑚
\𝑄

𝑚
𝑙𝑒𝑓𝑡(θ)

where represents a feature and represents a threshold [21]. The quality of the split would be determined using𝑗 𝑡
𝑚

functions that aim to find parameters that minimize impurity [21]. We performed a 10-fold cross-validation grid
search on impurity with values ['gini','entropy']and with values ranging from 1 to 50, at a step𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ
size of 5. It was found that {‘criterion':’gini’, ‘max_depth’: 30}were the optimal hyperparameter values.

3) XGBoost
eXtreme Gradient Boosting (XGBoost) is based on the gradient boosting decision tree algorithm but

employs an enhanced regularization method. It builds simple weak learning decision trees iteratively and improves
upon them to create a strong classifier. By default, XGBClassifier implements OVR classification. We performed a
grid search using 10-fold cross-validation, on the argument, evaluating a series of values from 50 to 200𝑛

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠
at a step size of 50 and the parameters ranging from 1 to 11, at increments of 2. It was found that𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ
{'max_depth': 3, 'xgb__n_estimators': 50}were the optimal hyperparameter values.

C. Baseline CNN Architecture
Convolutional Neural Networks (CNN) can use backpropagation to adaptively learn spatial hierarchies of

features [22]. In our base implementation, we incorporated 2 convolutional layers, a pooling layer and two
fully-connected layers along with regulatory units like dropout and operations like flattening to optimize CNN
performance.

A convolutional layer works by dividing the image into receptive fields, helping to extract feature motifs. It
convolves images through element-wise operations between the image and corresponding elements of the receptive
field [22]. In our implementation, we used a two-dimensional convolutional kernel of size 3x3 to filter the input
image. The first convolutional layer in our network learns 64 filters and the second one learns 128 filters.

The activation function for a convolved feature map is defined as where is the convolution𝑇
𝑙
𝑘 = 𝑔

𝑎
(𝐹

𝑙
𝑘) 𝐹

𝑙
𝑘

output of the layer for the input feature map, is the activation function and is the transformed output.𝑙𝑡ℎ 𝑘𝑡ℎ 𝑔
𝑎

𝑇
𝑙
𝑘

We use a ReLU activation function which removes negative values from our activation map, and helps train faster
without any major penalty to generalization accuracy [22].

The max pooling layer is used to down sample the spatial dimensions of the convolved output by
combining similar information in the neighborhood of the receptive field, and outputting the majority response using

, where is the input feature map, is the pooling function and is the pooled feature map. We𝑍
𝑙
𝑘 = 𝑔

𝑝
(𝐹

𝑙
𝑘) 𝐹

𝑙
𝑘 𝑔

𝑎
𝑍

𝑙
𝑘

operate the pooling function over a 2x2 square dimension, from which it returns the maximum value among the 4
values in the square matrix [22].

Dropout improves generalization by randomly setting input units or connections to 0 at a predefined
frequency at each step during training time. We used it with a frequency of 0.1 after the first fully connected layer.

We added a layer that flattens the input structure to create a single long feature vector to be used by the
dense layer for the final classification.

Dense layers are fully connected layers in which every neuron is connected to all neurons in the preceding
and following layer. They globally analyze the output of all preceding layers and make a non-linear combination of
selected features. We employ them at the output of the neural network with 3 neurons as per our classification task,
with softmax as the activation function to get the multi-class probabilities and cross entropy for computing loss.

D. Hybrid CNN-SVM and CNN-XGBoost
By itself, the shallow architecture of classifiers like SVM and XGBoost can present difficulties in learning

deep features. However, they display good generalization ability and can be useful when working with small
datasets. The CNN model can extract features at multiple scales from an input image by way of convolution,
pooling, etc. and can concatenate the outputs into a single feature vector, which can then be used as an input for a
dense layer. However, they require large amounts of data and are prone to overfitting.

As a potential solution, we propose the use of the base CNN from Section III.C to extract the most
discriminating features from the input images, and replace the last fully-connected softmax layer with an SVM or
XGBoost classifier, with configurations similar to those defined in Section III.B. The classifier will then be trained
on the automatically extracted feature vectors, which are generally more efficient to work with, in contrast to
hand-crafted features.

E. Models with and Without PCA
In Section III.A, we empirically determined an optimal number of PCs and converted the original pool of

16,384 features to 1,024 synthetic features. We hypothesize that using PCA-transformed features as inputs will
decrease computation time, and either increase or not have a significant impact on training performance. We trained
all baseline models, the base CNN architecture and the hybrid CNN architectures on these PCA-transformed inputs.

IV. EXPERIMENTAL SETUP AND RESULTS

FIGURE 4: Experimental Setup. Task 1: Comparison of baseline models, with and without PCA, Task 2: Comparison of various CNN
configurations, Task 3: Performance evaluation of the base CNN model and hybrid CNN approaches.

We split the original set of 6,939 images into 70% for training, 15% for validation and 15% for testing. All
images were passed through the standard image pre-processing pipeline described in Section III.A. For various
experiments, PCA was used to transform original images of size 128x128 into 32x32. To quantify classification
performances, we used accuracy, precision, recall, F1 score as performance indices. Each model was trained 20
different times, and its mean test set performance is reported along with the 95% confidence interval.

Previously described models formed the basis of our experimental setup, and we performed three
classification tasks as pictured in Figure 4 and described as follows:

1. Task 1: Comparison of baseline models, with and without PCA
We compared the performance of 3 shallow classifiers: SVM (Kernel=RBF, C=0.01, Gamma=1), DT

(Criterion=’gini’, Max. Depth=30), XGBoost (Max. Depth=3, Number of Estimators=50). We used cross validation
grid search to train each model twice, once on the original feature set, and another time on the PCA transformed
feature set. The results for this task are presented in Table 1.

TABLE 1: Performance evaluation of three shallow classifiers for multi-class classification.
Accuracy Precision Recall F1

No PCA PCA No PCA PCA No PCA PCA No PCA PCA
SVM 0.982 ±

1.54e-16
0.977 ± 0.0 0.972 ±

1.541e-16
0.965 ±
1.541e-16

0.967 ± 0.0 0.966 ±
1.541e-16

0.970 ±
1.541e-16

0.965 ±
1.541e-16

XGBoost 0.940 ±
1.541e-16

0.950 ± 0.0 0.976 ±
1.541e-16

0.970 ± 0.0 0.841 ±
1.541e-16

0.880 ±
1.541e-16

0.893 ± 0.0 0.914 ± 0.0

DT 0.859 ±
0.00811

0.886 ±
0.004

0.753 ±
0.0181

0.816 ±
0.008

0.747 ±
0.0236

0.803 ±
0.006

0.742 ±
0.0132

0.803 ±
0.009

2. Task 2: Comparison of various CNN configurations
An optimal CNN architecture can be built by iteratively tuning hyperparameters of the network and

observing its performance on the dataset. In this task, each hyperparameter was selected from a distinct discrete or
continuous domain and the performance of the resulting architecture was evaluated. We studied the effect of
changing the hyperparameters, one at a time, to determine the sensitivity of the model to each hyperparameter.

The hyperparameter search space we experimented with included the optimizer, activation function, max.
pool kernel size, convolution kernel size, the number of neurons in the dense layer, and the number of filters in the
first and second convolution layers. All networks in this task used a final softmax layer with 3 neurons to predict the
3 classes. Optimal hyperparameter value in each iteration was determined based on model performance metrics. The
hyperparameter space to be searched had 5 (optimizers) + 5 (dropout rates) + 3 (activation functions) + 3 (pool
kernel sizes) + 3 (convolution kernel sizes) + 4 (dense layer sizes) + 3 (convolution layer 1 sizes) + 3 (convolution
layer 2 sizes) = 30 hyperparameters. Consequently, 30 CNNs of varying configurations were trained in this task, the
results for which are summarized in Tables A1-8 (Section Appendix A). Figure 5 and Table 2 detail the search space
for each hyperparameter, default values used to start the search and the optimal parameter values, as determined by
model performance.

TABLE 2: Hyperparameter search space and optimal values as determined by model performance.
Parameter Search Space Default Value Optimal Value
Optimizer [‘Adam’, ‘SGD’, ‘RMSProp’,

‘AdaGrad’, ‘AdaDelta’]
Adam Adam

Dropout Rates [0.1, 0.2, 0.3, 0.4, 0.5] 0.1 0.3
Activation Function [‘ReLU’, ‘Tanh’, ‘Sigmoid’] ReLU ReLU
Pool Kernel Size [2,3,4] 2 4
Convolution Kernel Size [3, 5, 7] 3 5
Dense Layer Size [32, 64, 128, 256] 128 64
Convolution Layer 1 Size [32, 64, 128] 64 128
Convolution Layer 2 Size [32, 64, 128, 256] 128 64

FIGURE 5: Results for comparison of various CNN configurations. A. Optimizer. B. Dropout rate. C. Activation function. D. Kernel pool size. E.
Convolution kernel size. F. No. of neurons in the Dense layer. G. No. of Filters in Convolution layer 2. H. No. of Filters Convolution layer 1.

3. Task 3: Classification of CNN features using shallow classifiers, with and without PCA
From Figure 5, we noticed that in most cases, the training accuracy saturates at 10 epochs. Hence, we chose

10 as an optimal number of epochs to avoid overfitting, while still allowing the training process to converge. For all
CNN models in this task, mini-batch training was used, with 256 input samples per batch. The train validation split
was taken to be a conventional 80-20 for the training with 10 epochs. These mini-batches were selected at random
and with replacement from the sample set. We used the built-in categorical cross-entropy as the loss function to be
minimized and Adam as the optimizer.

We trained each model twice, once on the original feature set, and another time on the PCA-transformed
feature set. For hybrid CNN models, the penultimate layer of a trained CNN was used as a feature input vector to the
SVM or XGBoost classifiers. The results for this task are presented in Table 3.

TABLE 3: Performance evaluation of the base CNN model and hybrid CNN approaches.
Accuracy Precision Recall F1

No PCA PCA No PCA PCA No PCA PCA No PCA PCA
Base CNN 0.928 ±

0.002
0.917 ±
0.002

0.928 ±
0.001

0.887 ±
0.006

0.815 ±
0.005

0.843 ±
0.004

0.861 ±
0.004

0.861 ±
0.003

Base CNN
+ SVM

0.930 ±
5.331e-17

0.899 ±
1.541e-16

0.928 ±
1.066e-16

0.872 ±
1.541e-16

0.814 ±
5.331e-17

0.785 ± 0.0 0.861 ±
5.331e-17

0.811 ± 0.0

Base CNN
+ XGBoost

0.929 ±
5.331e-17

0.897 ± 0.0 0.901 ± 0.0 0.845 ± 0.0 0.839 ± 0.0 0.804 ± 0.0 0.867 ± 0.0 0.812 ±
1.541e-16

V. DISCUSSION
Among the three shallow classifiers, our initial expectations were that XGBoost would produce better

results by boosting the model during training by sequentially converting the weak classifier into a stronger one, but
this was not the case. With the exception of precision, where XGBoost scored higher, SVM had the best
performance across all metrics in both PCA and non-PCA subspaces. As expected, DT had the lowest performance,
with a difference of 13% and 9% in non-PCA and PCA subspaces in comparison to SVM. Interestingly, SVM
appears to be the most sensitive to PCA compression, as the accuracy, precision, recall and F1 scores all decreased
in this subspace, suggesting dimension reduction was not effective for this model. In contrast, the metric scores of
both XGBoost and DT increased when trained with the PCA-transformed data. However, despite the improvement
in performance, XGBoost and DT still performed worse than SVM overall.

After testing the effect of different optimizers on the base CNN performance, we found that the Adam
optimizer performed the best across all metrics. This was expected due to Adam’s ability to adapt the learning rate
scale for different layers and converge faster to find a critical point. Previous studies have also reported Adam’s
superior performance in comparison to other optimizers, further supporting our results.

We evaluated the performance of various dropout values ranging from 10% to 50% and found that a
dropout of 30% yielded the best results. By dropping an increasingly larger number of units from the neural
network, the model was better able to prevent overfitting, resulting in improved metrics; however, after the 30%

mark, the metrics began decreasing, indicating that too many units were being removed from the network.
Therefore, we report 30% as the highest-performing dropout value for our 2D-CNN model.

From our experiments on activation functions, ReLU performed the best with all of its metrics beating both
tanh and sigmoid by a significant margin. Owing to its non-linearity property, we expected similar results, keeping
in mind the various studies that have been done comparing the different activations on similar image classification
tasks.

Max pooling kernel size of 4 was the largest that we experimented with, and interestingly, we found that it
also outperformed the other two lower sizes. Since it essentially partitions the input image into a set of
non-overlapping regions, we believe that since the X-Ray images consisted of only 3 classes and were more alike in
composition, a larger intentional down sampling on the input actually helped in outputting accurate values for the
next convolution layers from larger grid sizes.

We found that 5x5 kernel sizes worked best, which are in between the highest and the lowest sizes we
experimented with. It seems that the information available in the low level features present in local pixels are more
diligently captured from a medium sized kernel than a low 3x3. At the same time, it also makes sense that a larger
7x7 kernel ends up losing valuable information by overlooking local pixels and skipping essential information
captured successfully in the lower sized kernels, hence performing the worst among the three.

Amongst dense layer sizes ranging from 32-256, we found that a size of 64 had the highest performance in
terms of accuracy, recall and F1 scores. After this point, the performance decreased with higher sizes across all
metrics, except precision, which interestingly increased by 0.005. However, due to the overall improvement in
performance at 64, we report that this dense layer size yielded the best results. Since dense layers are used to change
dimensions of the output vector at each layer, this can lead to increases in performance, which we observed in our
experiment. More filters in the input convolution layer gave better results which is similar to what we expected, as
shown from our reported metrics. Convolution layer 1 with 128 filters was the highest we experimented with, and it
ended up performing better than the other two lesser ones.

The highest performing conv layer 2 size was 64 across all metrics except precision, where the 256 size
performed slightly better. At a feature layer size of 128, all metric scores diminished in comparison to the 64 size,
but interestingly, the performance did not continue to decrease; instead, it improved at the 256 feature layer size.
However, in terms of overall performance, the 64 feature layer size had the best results. We expected that the
increase in number of filters would yield better results, which was observed in our experiment.

In terms of the base CNN and hybrid CNN models, we found that the base CNN+SVM model with
non-PCA-transformed data performed the best. In the non-PCA subspaces, the base CNN+SVM model had the
highest accuracy at 93%, but the base CNN had an accuracy of 92.8%, and the two models had very comparable
results across all the metrics, with only differences ranging from 0-0.002%. There was a roughly 2% difference in
precision and recall scores for CNN+XGBoost in comparison to the other two models, but otherwise a similar
accuracy at 92.9%. This suggests replacing the last fully-connected softmax layer in the base CNN model with the
shallow SVM and XGBoost classifiers had minimal impact on performance. In the PCA subspaces, the base CNN
model had the highest scores across all metrics. However, between the PCA and non-PCA results, accuracy and
precision for the base CNN model decreased, while recall increased by 3% and F1 scores stayed the same. For both
CNN+SVM and CNN+XGBoost, all metric scores decreased in the PCA subspaces in comparison to non-PCA,
illustrating that dimensionality reduction did not improve performance.

Based on the overall performances of the shallow and deep classifiers, we report that the shallow,
non-PCA-transformed SVM classifier had the highest performance, with an accuracy of 98.2%. This was surprising,
as we expected one of the hybrid CNN models to perform the best. However, we suspect that the SVM classifier
may have overfit the data, which would explain its high metric scores; if we had used more than 10 epochs during
training, we believe that the model would have achieved higher accuracy, which reinforces our notion of overfitting.

VI. CONCLUSION
In this study, we performed experiments on a Kaggle dataset composed of chest X-Rays from nine different

data sources. We used a larger and more balanced COVID-19 image set in comparison to what has been reported in
most previous research studies. We demonstrated the impact of image processing and dimensionality reduction
techniques like PCA on subsequent model performance. We performed a comparative study involving three shallow
classifiers (SVM, DT, and XGBoost), various 2D-CNNs configurations and hybrid CNN methods like
CNN-XGBoost and CNN-SVM. Through proposed frameworks, we demonstrated that by applying shallow and
deep learning techniques on chest X-Ray images, we can obtain reliable results in predicting COVID-19.

VII. FUTURE DIRECTIONS
In the future, we intend to experiment with additional dimensionality reduction techniques like Kernel

PCA, image preprocessing techniques like Canny edge detection or the Gaussian Gradient operator, as well as image
augmentation techniques like horizontal/vertical shifts, random rotations, zooms and brightness adjustments, to
increase the volume of the data. This would help reduce the generalization error of the network. In Task 3, we used
the penultimate layer of the trained base CNN model as input feature vectors to binary classifiers like CNN and
XGBoost. In future iterations, we can extend the proposed hybrid CNN architectures to extract features from the
fully connected layers of off-the-shelf/pre-trained networks like VGG16, GoogleNet, InceptionV3 and ShuffleNet,
as described in some related works. In Task 2 of this study, we conducted a thorough hyperparameter space search.
We noticed that the evaluation of many hyperparameter configurations can be subjective and time-consuming.
Hyperparameter search can get prohibitively expensive as the number of parameters increases. Additionally, since
hyperparameter values depend on each other, independently tuning the values does not lead to an overall optimal set
of hyperparameter values. In future iterations of this experiment, we intend to iteratively build upon the most
optimal architectures and look into mechanisms of narrowing the scope of the search through methods like random
search, where we can randomly sample values from a bounded hyperparameter domain and make the computation
time more manageable.

REFERENCES

[1] B. Sekeroglu and I. Ozsahin, "Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks", SLAS
TECHNOLOGY: Translating Life Sciences Innovation, vol. 25, no. 6, pp. 553-565, 2020. Available: 10.1177/2472630320958376.

[2] M. Satu et al., "Convolutional Neural Network Model to Detect COVID-19 Patients Utilizing Chest X-ray Images", medRxiv, 2020. Available:
10.1101/2020.06.07.20124594.

[3] G. Jia, H. Lam and Y. Xu, "Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method",
Computers in Biology and Medicine, vol. 134, p. 104425, 2021. Available: 10.1016/j.compbiomed.2021.104425.

[4] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani and G. Jamalipour Soufi, "Deep-COVID: Predicting COVID-19 from chest X-ray images using
deep transfer learning", Medical Image Analysis, vol. 65, p. 101794, 2020. Available: 10.1016/j.media.2020.101794.

[5] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition", arXiv, 2015. Available:
https://arxiv.org/abs/1512.03385.

[6] "RESNET", Pytorch.org. [Online]. Available: https://pytorch.org/hub/pytorch_vision_resnet/. [Accessed: 15-Dec-2021].

[7] F. Iandola, S. Han, M. Moskewicz, A. Khalid, W. Dally and K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size", arXiv, 2016. Available: https://arxiv.org/abs/1602.07360. [Accessed 15-Dec-2021].

[8] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, "Densely Connected Convolutional Networks," 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269, doi: 10.1109/CVPR.2017.243.

[9] P. Sethy, S. Behera, P. Ratha and P. Biswas, "Detection of coronavirus Disease (COVID-19) based on Deep Features and Support Vector
Machine", International Journal of Mathematical, Engineering and Management Sciences, vol. 5, no. 4, pp. 643-651, 2020. Available:
10.33889/ijmems.2020.5.4.052.

[10] J. Stubblefield et al., "Transfer learning with chest X-rays for ER patient classification", Scientific Reports, vol. 10, no. 1, 2020. Available:
10.1038/s41598-020-78060-4.

[11] Rekha Rajagopal, "Comparative Analysis of COVID-19 X-ray Images Classification Using Convolutional Neural Network, Transfer
Learning, and Machine Learning Classifiers Using Deep Features", Pattern Recognition and Image Analysis, vol. 31, no. 2, pp. 313-322, 2021.
Available: 10.1134/s1054661821020140.

[12] A. Zargari Khuzani, M. Heidari and S. Shariati, "COVID-Classifier: an automated machine learning model to assist in the diagnosis of
COVID-19 infection in chest X-ray images", Scientific Reports, vol. 11, no. 1, 2021. Available: 10.1038/s41598-021-88807-2.

[13] J. Cohen, P. Morrison and L. Dao, "COVID-19 image data collection", GitHub, 2020. [Online]. Available:
https://github.com/ieee8023/covid-chestxray-dataset. [Accessed: 15-Dec-2021].

[14] L. Wang et al., "Figure 1 COVID-19 Chest X-ray Dataset Initiative", GitHub, 2020. [Online]. Available:
https://github.com/agchung/Figure1-COVID-chestxray-dataset. [Accessed: 15-Dec-2021].

[15] A. Haghanifar, M. Molahasani Majdabadiand S. Ko, “COVID-19 Chest X-Ray Image Repository”. figshare, 2020, doi:
10.6084/m9.figshare.12580328.v2.

[16] H. B. Winther, H. Laser, S. Gerbel, S. Maschke, J. Hinrichs, J. Vogel-Claussen, F. Wacker, M. Höper, B. C. Meyer, “COVID-19 Image
Repository”. figshare, 12-May-2020, doi: 10.6084/m9.figshare.12275009.v1.

[17] Alqudah, Ali Mohammad; Qazan, Shoroq (2020), “Augmented COVID-19 X-ray Images Dataset”, Mendeley Data, V4, doi:
10.17632/2fxz4px6d8.4

[18] P. Mooney, "Chest X-Ray Images (Pneumonia)", Kaggle.com, 2017. [Online]. Available:
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. [Accessed: 15-Dec-2021].

[19] "NIH Chest X-rays", Kaggle.com, 2021. [Online]. Available: https://www.kaggle.com/nih-chest-xrays/data. [Accessed: 15-Dec-2021].

[20] Chih-Wei Hsu and Chih-Jen Lin, "A comparison of methods for multiclass support vector machines," in IEEE Transactions on Neural
Networks, vol. 13, no. 2, pp. 415-425, March 2002, doi: 10.1109/72.991427.

[21] "1.12. Multiclass and multi output algorithms", scikit-learn, 2021. [Online]. Available:
https://scikit-learn.org/stable/modules/multiclass.html. [Accessed: 15-Dec-2021].

[22] A. Khan, A. Sohail, U. Zahoora and A. Qureshi, "A survey of the recent architectures of deep convolutional neural networks", Artificial
Intelligence Review, vol. 53, no. 8, pp. 5455-5516, 2020. Available: 10.1007/s10462-020-09825-6 [Accessed 15 December 2021].

https://arxiv.org/abs/1512.03385

APPENDIX
A. Task 3: Comparison of various CNN configurations

TABLE A1. Performance evaluation of different optimizers on the base 2D-CNN model.
Optimizer Accuracy Precision Recall F1

Adam 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

SGD 0.2050 ± 0.0931 0.0683 ± 0.0310 0.3333 ± 2e-17 0.1032 ± 0.0304

RMSProp 0.9341 ± 0.0099 0.9072 ± 0.0158 0.8738 ± 0.0205 0.8850 ± 0.0134

Adagrad 0.8879 ± 0.0200 0.8548 ± 0.0607 0.7726 ± 0.0581 0.7796 ± 0.0537

Adadelta 0.8761 ± 0.0188 0.8447 ± 0.0468 0.7353 ± 0.0678 0.7395 ± 0.0626

TABLE A2. Performance evaluation of different dropout rates on the base 2D-CNN model.
Dropout Accuracy Precision Recall F1

10% 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

20% 0.9540 ± 0.0034 0.9400 ± 0.0078 0.8937 ± 0.0070 0.9149 ± 0.0055

30% 0.9578 ± 0.0032 0.9401 ± 0.0078 0.9072 ± 0.0084 0.9225 ± 0.0061

40% 0.9525 ± 0.0026 0.9309 ± 0.0070 0.9029 ± 0.0103 0.9154 ± 0.0049

50% 0.9417 ± 0.0329 0.9276 ± 0.0336 0.9016 ± 0.0100 0.9072 ± 0.0320

TABLE A3. Performance evaluation of different activation functions on the base 2D-CNN model.
Activation Function Accuracy Precision Recall F1

ReLU 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

TanH 0.7869 ± 5e-17 0.2623 ± 0.0 0.3333 ± 2e-17 0.2935 ± 2e-17

Sigmoid 0.8783 ± 0.0277 0.7492 ± 0.1160 0.6685 ± 0.0929 0.6750 ± 0.1052

TABLE A4. Performance evaluation of different max pooling layer kernel sizes on the base 2D-CNN model.
Pool Kernel Size Accuracy Precision Recall F1

2 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

3 0.9566 ± 0.0039 0.9384 ± 0.0063 0.9010 ± 0.0125 0.9181 ± 0.0077

4 0.9651 ± 0.0044 0.9436 ± 0.0076 0.9346 ± 0.0117 0.9381 ± 0.0077

TABLE A5. Performance evaluation of different convolution kernel sizes on the base 2D-CNN model.
Conv. Kernel Size Accuracy Precision Recall F1

3 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

5 0.9496 ± 0.0085 0.9282 ± 0.0127 0.8909 ± 0.0227 0.9055 ± 0.0178

7 0.9399 ± 0.0163 0.8957 ± 0.0465 0.8819 ± 0.0338 0.8843 ± 0.0393

TABLE A6. Performance evaluation of different dense layer sizes on the base 2D-CNN model.
Dense Layer Size Accuracy Precision Recall F1

32 0.8783 ± 0.0277 0.7492 ± 0.1160 0.6685 ± 0.0929 0.6750 ± 0.1052

64 0.9503 ± 0.0033 0.9161 ± 0.0101 0.9067 ± 0.0073 0.9103 ± 0.0051

128 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

256 0.9463 ± 0.0178 0.9045 ± 0.0711 0.8739 ± 0.0600 0.8878 ± 0.06568

TABLE A7. Performance evaluation of different convolution layer 1 sizes on the base 2D-CNN model.
Conv. Layer 1 Size Accuracy Precision Recall F1

32 0.9459 ± 0.0037 0.9292 ± 0.0077 0.8755 ± 0.0097 0.8996 ± 0.0077

64 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

128 0.9506 ± 0.0035 0.9290 ± 0.0058 0.8872 ± 0.0107 0.9062 ± 0.0064

TABLE A8. Performance evaluation of different convolution layer 2 sizes on the base 2D-CNN model.
Conv. Layer 2 Size Accuracy Precision Recall F1

32 0.9283 ± 0.0105 0.9006 ± 0.0161 0.8371 ± 0.0259 0.8649 ± 0.0223

64 0.9535 ± 0.0029 0.9323 ± 0.0085 0.9043 ± 0.0059 0.9172 ± 0.0042

128 0.9474 ± 0.0045 0.9211 ± 0.0071 0.8908 ± 0.0111 0.9044 ± 0.0079

256 0.9517 ± 0.0076 0.9343 ± 0.0066 0.8941 ± 0.0230 0.9104 ± 0.0166

